sunny morning dairy cows eating at bunk

Low Colostrum Production: Lots of Questions…Not as Many Answers

Questions concerning low colostrum production are common throughout the year but are much more prevalent during the Fall. This phenomenon is not new, as our industry has dealt with this issue for the last 20+ years. We continue to hear questions from dairy producers, “We never saw these colostrum issues years ago,” “Why does it always happen during the Fall season?” “Is there something missing in the pre-fresh diet?” To answer these questions and provide effective on-farm solutions, we first need to start with what we do know. 

We do know that photoperiod has a dramatic effect on colostrum production. Research has shown a highly significant effect on colostrum production as daylight decreases, with the lowest colostrum yield occurring in December, which has the shortest days of the year. On average, mature cows (2+ lactation) that calve in June produce 3X more colostrum than mature cows that calve in December. In fact, field studies report that up to 35% of mature cows give ZERO colostrum at calving during the month of December. Eventually, these cows will come into milk and early lactation milk production is not affected. 

Since we cannot change seasonality and the associated photoperiod effect, what are the on-farm checkpoints that we need to closely evaluate when colostrum production is challenged: 

  1. Pre-fresh Dry Matter Intake (DMI): Maintaining a high and consistent DMI is critical for fresh cow success and colostrum production. Factors that can negatively impact DMI include overcrowding, bunk management, TMR particle and moisture consistency, forage fermentation issues, molds and mycotoxins, too little time in the pre-fresh group, excess cow moves, etc. Work closely with your nutritionist and management team to identify and minimize these potential bottlenecks that may limit colostrum production.
  2. Pre-fresh Fiber Sources & Length: Dry cow and pre-fresh diets containing high levels of straw and/or grass hay have become common in the last 20 years due to higher and more consistent intakes that increase gut fill which results in better fresh cow health. With higher levels of straw/grass hay, comes the challenge of achieving a consistent particle size and optimal moisture level to minimize sorting. In addition, some straw/grass hay may contain potential antagonists that could interfere with the hormonal changes required for the initiation of colostrum synthesis and parturition.
  3. Pre-fresh Dietary & Management Compliance: Review the key nutrients essential for colostrum production with your nutrition team and management staff. Ensuring that a well-balanced diet is formulated and correctly implemented provides another opportunity for colostrum success. 
    1. Adequate Water Access & Intake 
    2. Optimizing Dietary Metabolizable Protein (MP) Levels: 
      1. Consider increasing MP levels while maintaining the optimal level and ratio of the key amino acids, lysine, and methionine.
    3. Monitoring Energy Intake:
      1. Consider increasing dietary starch/sugar levels without sacrificing effective fiber intake.
    4. Assessing Vitamin & Mineral Supplementation:
      1. Highly bioavailable sources of trace minerals and vitamins are important to combat oxidative stress and enhance immune function.
  4. Dry Period Management: Field research from Cornell University shows that slightly longer dry periods and gestation lengths are correlated to higher colostrum yield. Are your days dry averaging closer to 60 days or 50 days? Dry periods of less than 50 days are associated with lower colostrum yield.
  5. Maternity Management: How long is the dam with the newborn calf? Does this alter the hormonal induction of colostrum? With today’s tight maternity protocols, consideration for if it makes sense to provide extra time for the dam and newborn calf may need to be examined. 

 

References: 

  1. Changes in biomarkers of metabolic stress during late gestation of dairy cows associated with colostrum volume and immunoglobulin content. 2023.  R.M. Rossi, et al. Michigan State University. East Lansing, MI
  2. Epidemiology of bovine colostrum production in New York Holstein herds: Prepartum nutrition and metabolic indicators. 2023. J. Dairy Sci.106:4896–4905  T. A. Westhoff, et al. Cornell University, Ithaca NY
  3. Low colostrum yield in Jersey cattle and potential risk factors. 2018. J. Dairy Sci. 101:6388-6398  K. Gavin, et al. Washington State University, Pullman WA 
Improving Animal Health

Dietary Phosphorus Implications in Transition Cows

Dietary management strategies to improve blood calcium and reduce the risk of milk fever in dairy cows has been extensively studied over the decades. While research has looked at products, work has also focused on evaluating various levels of individual macro-minerals in pre-fresh diets and the impact on a cow’s risk for milk fever. More recently, research has focused on how reducing dietary phosphorus concentrations could help improve blood calcium and reduce the risk of hypocalcemia.

At the 2023 Tri-State Conference, Walter Grünberg, a German researcher, discussed his recent work on restricting prepartum dietary phosphorus content. One of the main highlights was a study that restricted dietary phosphorus (0.16% DM) in close-up dry cows for the four weeks prior to calving. Cows that were fed the restricted phosphorus diet prepartum had decreased blood phosphorus concentrations, while also having significantly greater blood calcium concentrations relative to their counterparts fed a diet adequate in dietary phosphorus (0.30% DM).

Cows fed the restricted phosphorus diet prepartum also had increased markers of bone mobilization. Mobilizing bone is a crucial part of a cow’s physiology to maintain blood calcium as she starts to synthesize colostrum and milk. Bone is a major supplier of calcium during times of extreme demand, such as lactation, due to the large stores of calcium (and phosphorus) found within bone. These signals to mobilize bone in the current study appear to be induced through the presence of low blood phosphorus concentrations, a result of the restricted dietary phosphorus intake. Grünberg’s results indicate that restricting dietary phosphorus content in the close-up dry cow can improve blood calcium status primarily by driving bone resorption.

Grünberg’s research is not the first to show the relationship between dietary phosphorus and blood calcium in the dairy cow. Historically, research has demonstrated that increasing levels of dietary phosphorus results in lower blood calcium concentrations and increased risk of milk fever. This same concept holds true in other species, with work demonstrating that high blood phosphorus concentrations can inhibit vitamin D synthesis. However, a dietary phosphorus restriction large enough to robustly decrease blood phosphorus concentrations and induce bone mobilization to support calcium demand and improve blood calcium at calving had not been studied in the dairy cow until now.

Stay tuned for more on phosphorus restriction pre-fresh and implications on blood calcium —don’t hit the snooze button!

References

Goff, J. P. 2006. Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Animal Feed Science and Technology. 126:237-257.

Lean, I.J., P.J. DeGaris, D.M. McNeil, and E. Block. 2006. Hypocalcemia in Dairy Cows: Meta-analysis and Dietary Cation Anion Difference Theory Revisited. Journal of Dairy Science 89:669–684.

Rader, J. I., Baylink, D. J., Hughes, M. R., Safilian, E. F., and M. R. Haussler. 1979. American Journal of Physiology. Calcium and Phosphorus Deficiency in Rats: Effects on PTH and 1,25-dihydroxyvitamin D3. 236:118-122.

Wächter, S., I. Cohrs, L. Golbeck, M.R. Wilkens, and W. Grünberg. 2022. Effects of restricted dietary phosphorus supply to dry cows on periparturient calcium status. Journal of Dairy Science 105:748–760.